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Wigner's phase space function for LiH is calculated and compared with the 
function for the system consisting of two non-interacting Li and H atoms. 
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1. Introduction 

In some recent papers [1-7] we have interpreted Wigner's phase space function 
as an electron density in the six dimensional phase space, and examined it for 
some simple atomic systems: the hydrogen atom [3], and the helium, the beryl- 
lium, the neon, the argon, and the zinc atom [5]. Those investigations represent,  
as far as we know, the only examination of the phase space function for atomic 
states, although it was introduced by Wigner as early as in 1932 [8]. 

The phase space function makes a very detailed study of atomic structure possible, 
e.g. including a possibility of comparing classical and quantum mechanics in a 
simple way. Therefore,  it seems natural to extend our earlier analysis to molecular 
systems too. Hence, in this paper we present an investigation of the formation 
of the LiH molecule as seen from a phase space point of view. LiH is chosen 
since it is one of the smallest heteropolar molecules, and many theoretical 
investigations have been performed on this molecule (see e.g. [13-17]). It has 
been stated [16] that a Har t ree -Fock  wavefunction provides a reliable description 
of the chemical bond in LiH. Thus, in this paper we will not go beyond the 
Har t ree-Fock  wavefunction. 

For details about the Wigner phase space function the reader is referred to [1-7] 
and references therein. 

* Present  address: Max-Planck-Institut ffir Festk6rperforschung, D-7000 Stuttgart 80, Federal 
Republic of Germany 
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2. Phase Space Functions for LiH 

LiH can be described in a cartesian coordinate system with the Li nucleus placed 
at origo and the H nucleus placed at (x, y, z ) =  (0, 0, R),  where we here have 
chosen the experimental bond length [9]: 

R = 3.015 a.u. (1) 

We have here and anywhere else in this paper used atomic units, i.e. the electronic 
mass me and Planck's constant h are set to 1 and the electronic charge - e  to -1 .  

We can now calculate two different phase space functions: one that is the phase 
space function based on the molecular orbitals Ira(r, p), and one that is the sum 
of the phase space functions for the atomic orbitals [a(r, p). We will then be able 
to see the changes in the phase space arising from the formation of the chemical 
bond. 

If we write the wavefunction in coordinate representation for each of the three 
systems of interest: the Li atom, the H atom, and the LiH molecule as a single 
Slater-determinant, we can use the methods of [4, 5] in calculating the two phase 
space functions. The result is 

fa(r, p) = 2 fL~,ls(r, P) + fLi,2~ (r, p) +fn,l~ (r, p) (2) 

fm (r, p ) = 2fLirt,1 O" (r, p) + 2fLiH,2Or (r, p) 

where each of the phase space functions for the orbitals can be found by 
transforming the corresponding wavefunction in coordinate representation 
according to 

1 I ~ ( r , p ) =  ~ O*(r-r ' )Oi(r+r')e-21vr 'dr  '. (3) 

The atomic wavefunctions are written as a linear combination of Gaussian 
s-functions taken from [10], and the molecular wavefunctions are found by 
performing a HF-SCF calculation [11] with the same total basis set extended 
with a Gaussian p~-function placed on the Li nucleus. 

All the obtained data, including the ones from Ref. [10] are collected in 
Table 1. 

It is now a trivial although cumbersome matter of integrations to find the two 
phase space functions, fa(r, p) and f,~(r, p), using Eqs. (2) and (3). 

3. Results 

Interpreting the phase space functions as electron densities it turns out that it 
is convenient to use cylindrical coordinates with the z-axis as the cylinder-axis 
for both r and p: 

(x, y, z) = (r cos 0, r sin 0, z) (4) 

(Px, Py, Pz) = (Pr cos Po, Pr sin Po, Pz) 
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Type of Orbital Expansion Coe~cients 
orbital exponent H, ls Li, ls Li, 2s LiH, I~ LiH, 2~ 

Li, s 1359.4466 0 0.000844 0.000132 0.000843 -0.000097 ] 
204.02647 0 0.006485 0.001017 0.006481 -0.000746 t a 

46.549541 0 0.032466 0.005124 0.032446 -0.003734 
13.232544 0 0.117376 0.019108 0.117302 -0.013501 
4.286148 0 0.294333 0.050977 0.294438 -0.034276 
1.495542 0 0.450345 0.098292 0.449116 -0.076380 
0.542238 0 0.255307 0.131809 0.256604 -0.067663 
0.073968 0 0.008132 -0.573351 0.007291 0.241115 
0.028095 0 -0.002444 -0.521225 -0.004027 0.021327 
0.15 0 0 0 -0.005299 0.163795 

837.21974 0.000112 0 0 -0.000001 0.000083 ] 
133.52431 0.000895 0 0 0.000009 0.000665 l a 
27.704222 0.004737 0 0 0.000047 0.003522 

7.825986 0.019518 0 0 0.000193 0.014512 
2.565036 0.065862 0 0 -0.000221 0.051396 
0.938258 0.178008 0 0 0.002803 0.103057 
0.372145 0.350387 0 0 0.000631 0.253072 
0.155838 0.391529 0 0 0.000829 0.210113 
0.066180 0.133721 0 0 0.002451 0.258367 

Li, Pz 
H, s 

a Contracted during the molecular orbital calculations 

The  two phase  space  func t ions  d e p e n d  on the  two angles  0 and  Po only  th rough  
the  d i f fe rence  O - p o  which can be  t a k e n  as a consequence  of the  ro t a t i ona l  
s y m m e t r y  a r o u n d  the  m o l e c u l a r  axis of the  e l ec t ron  dens i ty  in c o o r d i n a t e  space .  

I n t e g r a t i o n  over  O and  Po leaves  us with two funct ions  of the  type  

f(r, z, Pr, Pz) (5) 

w h e r e  

f(r, z, p,, pz)r dr dz p, dprdpz (6) 

descr ibes  the  n u m b e r  of e l ec t rons  in a small  vo lume  e l e m e n t  in the  four  
d i m e n s i o n a l  phase  subspace  

r , p ,  e [0, oo[ 

z, p~ ~ ] - c o ,  0o[ (7) 

In o r d e r  to dep ic t  the  two phase  space  funct ions  we have  chosen  to in tegra te  
over  two of the  four  var iab les  in Eqs.  (5 -7)  and  then  m a k e  con tou r  p lo ts  showing  
the  d e p e n d e n c e  on the  two r e m a i n i n g  ones.  

Thus  Figs.  1, 3, and  5 show fa(z, Pz), fa(z, pr)'p,, and  f~(r, p , ) . rp ,  and Figs.  2, 
4, and  6 show the  same  d e p e n d e n c e s  for  fro. 

A c o m p a r i s o n  b e t w e e n  Figs.  1 and  2 and  b e t w e e n  Figs.  3 and 4 gives us at once  
tha t  the  b o n d  b e t w e e n  the  two a toms  for  a m a j o r  pa r t  is f o r m e d  by  r e m o v i n g  
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Fig. 1. Contour curves for the atomic phase space function fa(z, p~) for LiH in a (z, p~) phase plane. 
The Li nucleus is placed at z = p~ = 0, and the H nucleus at z = 3.015, p~ = 0. Contour values: - - :  
0.8, 0.5, 0.25, 0.1, 0.03, 0 . 0 h  - - - ;  0.0; - - - - :  -0 .01 ,  - 0 . 3  
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Fig. 2. Contour curves for the molecular phase space function f , ,  (z, Pz) for LiH presented as fa (z, Pz) 
in Fig. 1 
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Fig. 3. Contour curves for the atomic phase space function fa(Z, Pz) "P, for LiH in a (z, Pr) phase 
plane. The Li nucleus is placed at z =pr = 0, and the H nucleus at z = 3.015, Pr = 0. Contour values: 
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Fig. 4. Contour curves for the molecular phase space function fro(z, Pr)'Pr for LiH presented as 
fa(Z, pr)'p, in Fig. 3 
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Fig. 5. Contour curves for the atomic phase space function fa(r, p~) �9 rp, for LiH in a (r, p~) phase 
plane. The two nuclei are placed at r = p ~ = 0 .  Contour values: : 1.2, 0.8, 0.5, 0.25, 0.1, 0.03; 
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some of the electron densities from the region in coordinate space far behind 
the Li nucleus with small momenta to the region between the two nuclei still 
with small momenta. 

However, some of the most significant changes occur in regions in phase space 
with I ~-1 near the Li nucleus as is seen in Figs. 1 and 2. The de Broglie 
wavelength corresponding to the momentum p is the well known 

A = 27r ip .  (8) 

Thus, I pzl~- 1 corresponds in the LiH moleucle to waves with wavelengths in the 
direction of the molecular bond of A - 2 R ,  For many years it has been well 
known [12] that the most significant changes in momentum space under the 
formation of a bond occur for those wavelengths. Application of the phase space 
makes it possible to localise those changes to be centered around the Li nucleus 
in the LiH molecule. 

C. A. Coulson [12] states that the formation of a bond will move the distribution 
for the component of the momentum in the bond direction towards smaller 
values, and move the distribution for the component perpendicular to the bond 
towards higher values. This fact can be confirmed to be true locally too as the 
Figs. 1-6 show. 

In the analysis of the phase space function for atomic structures [3, 5] it was 
shown that for Irl, [t'l ~>2 the phase space function oscillated around the value 
0 with rapidly decreasing amplitude. In Figs. 1, 2, 5, and 6 we refind the 
oscillations far away from the nuclei. In fact, it turns out that they are almost 
for the sum of the atomic phase space functions and for the molecular phase 
space functions. Finally, it is remarkable that they do not show up in the Figs. 
3 and 4. 

4. Conclusion 

We have seen how the formation of a bond changes the electron density in phase 
space when interpreting Wigner's phase space function as this density. It is 
realised that the formation of a bond is a very local phenomenon also in phase 
space, so that only little away from the bonding region it is difficult to 
distinguish between a diatomic molecule and the two non-interacting atoms. 

We consider the most interesting figures in the present paper to be the Figs. 1 
and 2, since we here observe the largest changes when the bond is created. It 
has been shown [16, 17] that when forming the bond between the Li and the H 
atoms the charge density in coordinate space decreases close to the Li nucleus 
between the two nuclei, and increases in a large neighbourhood of the H nucleus 
and close to the Li nucleus beyond the nucleus. Thus, analysing Figs. 1 and 2 
we realise that in the LiH case those charge changes near the nucleus for the 
atom from which charge is removed, mainly happen for that part of the electron 
density in momentum space which corresponds to the de Broglie wavelength 
A =2R in the bond direction. 
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This statement, obviously true for the LiH molecule, is interesting, since it gives 
a more comprehensive description of a bond than the usual one: considering 
coordinate and momentum space separately, we find properties that are refound 
locally when examining both spaces at the same time. But before this can be 
established as a global trend in the formation of chemical bonds it should be 
investigated what happens in other diatomic heteronuclear systems, in diatomic 
homonuclear systems, and in sytems like the benzene molecule. 
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